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Abstract. We classify the pure states of a spisystem into oriented and non-oriented states.

A pure state is said to be non-oriented if it is not an eigensta®? @ind S, with respect to any

axis of quantization. If it is an eigenstate it is oriented. In this paper, we discuss the notion of
spin squeezing in these states. Our analysis shows that the oriented states are not squeezed while
non-oriented states exhibit squeezing. We also present a new scheme for the construction of spin-
states using £spinors oriented along different axes. Taking the case ef 1, we show that
‘non-oriented’ nature and hence squeezing arise from the intrinsic quantum correlations that exist
among the spinors in the coupled state.

1. Introduction

The notion of squeezing was initially introduced in the case of a harmonic oscillator [1] and
subsequently for the radiation field [2]. Since then it has also been extended to non-canonical
systems such as spin. The state of a harmonic oscillator is said to be squeezed if the variance
Ax?or Ap?isless tharg which is the minimum uncertainty limit. Although squeezing is thus
unambiguously defined in the case of bosonic systems [1], its definition in the context of spin
needs careful consideration. The components of the spin opératdisfy the commutation
relations

[Sy, Sy] =18, x,y,z cyclic Q)
and hence obey the uncertainty relationships
(S:)?

AS,EASyZ > x,y,z cyclic. )

4
A comparison of these uncertainty relations with?Ap? > % for a harmonic oscillator would
naturally suggest that a spin state could be regarded as squeex8d df AS§ is smaller

than &2” where the expectation value and the variances are calculated in some arbitrary
coordinate system. Indeed, this has been used as the squeezing criterion in the literature [2].
This criterion has been critically examined by Kitagawa and Ueda [2] who have remarked
that such a definition is coordinate dependent in the sense that a state which is squeezed in
a given coordinate frame will not be squeezed in some other coordinate frame. For more
details and remarks we refer the reader to [2]. In an attempt to arrive at a proper criterion for
squeezing, Kitagawa and Ueda [2] consider the model in which assgiate is visualized

as being built out of 2 elementary spin}— states. A coherent spin state (C3&)¢) is then

defined as a state in which all the lementary spins point in the same directit(@, ¢)

in real three-dimensional space. Apart from being an eigenstaie ofwith eigenvaluey,
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this state satisfies the minimum uncertainty relationship: namely (2), with equality sign with
uncertainties; equally distributed over any two orthogonal spin components normal to the
directionn. As this state is a combination of Spin—é states all pointing in the same direction

i, they conclude that there are no quantum correlations. They then go on to suggest that
if quantum correlations are established among the elementary spins, it would be possible to
cancel out fluctuations in one direction at the expense of those enhanced in the other direction.
Taking this as the physical basis for squeezing, they define that a spate is squeezed if the
variance in one spin component orthogonal to the mean spin vector is smaller than the standard
quantum limit5. An alternative criterion [3] for squeezing has also been given by Wineland
etal. This is based on the requirement of an improvement in sensitivity over what is obtained
by using the coherent state in the measurements with spins. Accordingly, astpte-is said

to be squeezed if the real parameter

_[2s(ash? :
S_[W} =1 )

WhereSlf is the spin component orthogonalio A physical basis for the origin of essentially

the above criterion has been obtained by Puri [4] who refers to it as SQII. This criterion, SQIl,
is claimed to be equivalent to the Kitagawa and Ueda condition referred to as SQI, in the sense
that SQII holds only if SQI is satisfied by a state.

In this paper, we study in some detail the structure of sptates which are obtained in a
novel way from 2 elementary spirizL- states each of which point independently ire2bitrary
directionsiy (01, ¢1), . .., na (02, ¢2,) and identify those states which exhibit squeezing. We
also show that the states so constructed are indeed non-oriented ang:for these states
possess not only quantum correlations as indicated by Kitagawa and Ueda [2] but also the
entangled structure when expressed in terms of the states of the two constituent spinors.

The paper is organized as follows: section 2 deals with the definition of oriented and non-
oriented states and their multi-axial nature. The squeezing behaviour of these states is also
presented here. In section 3 we present a new scheme of construction of arbitrargtspés
and use this scheme to construct a non-oriented spin-1 state. We discuss here the correlation
aspects associated with the basic spinorial configuration in these states which are shown to be
responsible for the manifestation of squeezing.

2. State classification and squeezing

The uncertainty relationship for the components of spin referred to a Cartesiandranwéh
mutually orthogonal directions j andk is given by

AS DA ))? = 3(5 - k)2 @)

In order to discuss spin squeezing, we first begin with the squeezing condition itself. Referring
to [2-4], we adopt the following definitionA spin state is squeezed if one of the variances
in the spin components normal to the mean spin direction is less than half the modulus of the
expectation value of the spin component along the mean spin direcgona spin state with
[ as the spin direction is said to be squeezeﬂfjrif
|(Sp)]

2

A(S)? < (®)

L .
whereS;; is the spin component orthogonalfo
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We first of all start with the familiar angular momentum stases);: i.e., the eigenstates
of $2 ands, with respect to the axis of quantizatiénFor such states, itself is the mean spin
direction and(S,) = m. We also have

AGS-D? =16 +D —m?) = Al - > (6)
It is clear that either of the squeezing conditions
AS-D? <3S R or AS- < 3SR (7)

is not satisfied here for any. Thus states such dsn); are not squeezed at all. One can
however consider superpositions of the staies; of the form

¥) = Culsm); (8)

and investigate if these exhibit squeezing or not. We consider two mutually exclusive classes
of such states which together exhaust all pure states i(2the 1)-dimensional spin space of
the system.

2.1. Oriented spin states

An oriented spin state by definition is a stafe of the form (8) wherein the coefficient,
are given by

Cm = D;;m/ (Ol/gj/) (9)

Here D* denote the standard rotation matrices with a fixed inde&nd a given set of Euler
angles ¢, 8, y). In effect, this means that an oriented staté is an angular momentum state
lsm') ,, with respect to the quantization axisin a frame of reference characterizedibyk’
which is related to thé jk frame via the Euler rotation through B, y. Equation (8) thus
takes the form

W) = lsm')p =Y D} (@By)lsm); (10)

for the above class of spin states. To illustrate the significance of the Kitagawa and Ueda
condition, we now calculate the relevant variances and the expectation values jk freeme
which turn out to be

A(S -2 =31 —sirfocod ¢)[s(s + 1) —m"?] (11)
and
(S;) = m' cosd (12)

wherea = ¢, g = 0, y = 0 are the Euler angles with ¢ being the polar angles a@f with
respect to the framgjk.
Having obtained these quantities in an arbitrary frame, we now see that there exists a wide
range of values of and¢ for which
o A S,
A(S-0)? < @ (13)
However, we cannot call such states squeezed, at this stage, as the mean spin dirkction is
and notk. If we now calculate the variances perpendicular to the mean spin direction, they
indeed turn out to be exactly equal to those in (6) and thus fail to be squeezed. To appreciate a
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significant feature of the alternative criterion, that it can be applied in any frame, we find that
& in the framei jk itself is given along the:-axis by

(14)

| 25(1 =i 0 cog ¢)(s(s + 1) —m") :
- m'’2co 6

Note thatt exceeds unity for alt:’, 6 and¢ except whery = %, ¢ = 0,7 in which case it
becomes indeterminate. Thus both criteria lead to the same conclusion that no oriented pure
state is a squeezed state. In particular, for spia % it is well known that any arbitrary set

of expansion coefficients,, in (8) may always be identified as (9) with an appropriate choice

of o, B, y, as a consequence of the homomorphism betu§é&f2) and O (3). Consequently,

all pure spin% states are oriented and thus do not exhibit squeezing. This naturally leads us
to consider states with > 1 where there exist states that are intrinsically different from the
oriented states. We now turn our attention to such states.

2.2. Non-oriented states

Any normalized spins state|y) of the form (8) is, in general, specified by feal independent
parameters. The oriented states described above are specified at the most by three parameters
which are the three independent Euler angleg andy. Since 4 > 3, fors > 1, there exist
states which are not oriented. In other words, there exist states which cannot be identified as
eigenstates af? and S, with respect to any choice of axis of quantization. We refer to such
states as non-oriented. While an oriented state is characterized by a single direction, i.e. the
axis of quantization (specified by two real varialfe®) in the physical space, a non-oriented
state could be characterized by more than one direction. In fact, it is interesting to know
whether any arbitrary spin stat¢) specified with respect to some frame in the form (8) is
oriented or not. This problem has been studied in quite some detail [5] using the density matrix
techniques and the notion of the spherical tensor parameters.

In order to see whether squeezing exists for a non-oriented state we now start with an
arbitrary statéy) and first determine its mean spin directfan This can be done for example,
by determining the direction cosines nf using the expectation values (ﬂ‘ S j) and
(S k) in the framexyz in which |) is initially specified. Once these are obtalned the polar
angles of the mean spin directigp with respect taxyz can be found out. A subsequent
rotation is then effected which takésto Zo. Furthermore, one can also now choose.the
andyo axes conveniently by rotating the resulting frame akigutor the most general spin-1
state that possesses a hon-zero mean spin y&jusuch a procedure leads to the form

[Y) = coss|l, 1) 4 +sind|l, —1),, O<dé=<m (15)

where|1, mg);, are the angular momentum states specified with respect té tes in the
X0Yozo frame. ThIS state is obviously non-oriented for all values other than 07, %, 37”,

7 as the coefficients in (15) do not satisfy (9) for any choicegf andy. For such a state
referred to the framegyozo, the relevant quantities needed for studying squeezing turn out to

be
ASE = ;(1 +sin 2)
A530 =1(1-sin2) (16)
(Sz,) =C0s D

so that the squeezing conditions &y andsS,, are, respectively, given by

1+sin2 < |cosd| a7
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Figure 1. Variations ofASf0 (solid curve),ASf,D(dashed curve) anpls‘%n (dotted curve) with

respect ta are shown. It is clear that except ®e= 0, 7, 7, 37”, 7 (when the state is oriented),

the statgyr) as given by (15) is squeezed eitheiSig orin .

and
1—-sin2 < |cos3|. (18)
These conditions are indeed separately valid for the entire rangexafept fors = 0, 7, 7,

37”, 7 which implies that a non-oriented statg) is indeed a squeezed state. The graph drawn

in figure 1, which contains the plots fzszfo, ASyZ.O and@ with respect to$, indeed show
that|y) is squeezed if,, in the open intervals & § < 7, 7 < § < 5 andinS,, in the other
intervals:Z <8 < 3,3 <§ <.

Needless to say, the non-oriented state is also squeezed according to the alternative

condition, as for thex(y) component given by
1
l+sin2s]2
&= [ cog 25 } (19)

is indeed less than unity for the range of values fofr which squeezing is exhibited according
to the former criterion.

3. Quantum correlations

Having thus identified the squeezed states in the spin-1 case, it is of interest to analyse in
quantitative terms the suggestion made by Kitagawa and Ueda that squeezing in spin systems
arises from the existence of quantum correlations. This can be done by employing the model
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in which a spins state is constructed using Epin—; states as has been suggested by them.
Indeed such constructions using spinors were known in mathematics and were defined in their
most general form by Cartan [6] much before the spinors were used to describe particles with
spin—; in physics. Majorana’s geometric realization [7] of a spistate as a constellation of
2s points on a sphere [8] lead to Schwinger’s idea [9] of realizimg) states in the form,
Tys+m tys—m
sm) = 42" (@) - [00) (20)
[(s +m)!(s —m)!]2

whereal, a! are the creation operators for the spin ‘up’ and spin ‘down’ states, respectively.
It must be noted here that spin ‘up’ and spin ‘down’ states as welliasare all referred to
the same axis of quantization.

Atthis point, we would like to generalize this realization by taking.®’ spinorsu (6;, ¢;);
I =1,...,2swhere thetth spinor is specified with respect to an axis of quantizafiQ(v, ¢;)
in the physical space. Coupling two such spinors leads to

u(Or, pru (@2, ¢2)) = Y Dzl(¢1910>021(¢2920) C(33j; mamom)|(35)jm) (21

ma,ma, j

wherej = 0, 1. Coupling 2 spinors this way leads to a spinstate in the form (8), which
implies that the coefficients,, are given by

1
Ll 2
Cm = Nsdm Ns_l = { Z |dm|2} (22)
where
dp= > C(33Limimour)C(A33: pamapa) ... C(s — 3385 as_omaum)
mi,..., maps_q . (23)

D? 1 ($1010)... D} 1 (2:02,0).
13 mas;

Thus our construction of a spin-state /) is done using 2 spin—; states which are

specmed Wlth respect tOstlfferent directions: 01, Oo, ..., Oy in general. In particular,
if Ql = j:Qz ing, then our construction spemahzes to the realization suggested
by Schwinger and employed by Kitagawa and Ueda and Puri and Agarwal. Indeed, in this
particular case, the spin state realized is nothing but an orientedsstatgince the coefficients
C,, in equation (22) are identical with (9). The significance of our construction lies in the fact
that if 0, # +0,, for at least two quantization directions, the state realized is a non-oriented
state of spiry (a formal proof is given in the appendix). As can be seen from the structure of
C,., the non-oriented states so constructed indeed form a non-denumerable dense subset in the
Hilbert space of the spin system.

Considering in particular the simplest case ef 1, we note that such a construction can
be carried out using two spinors specified with respe@i(ﬂlqbl) and Q2(02¢>2) so that the
spin-1 state

1 1
W) =N1Y D} 4 (@16100D] 4 (92620 C (5L mamom)|(33)1m) — (24)
in the lab framé jk is non-oriented if01 # £+ 0. The mean spin directiciy for such a state
happens to be along the bisector of the two directionandQ,. Employing the frameqyozo
with xo lying in the plane of0; and 0, as shown in figure 2, we see that the polar angles of
Ql and Q2 with respect torgyozo are respectivelyd, 0) and (0, ), where 2 is the angular
separation betwee@; and Q.. The statgy/) then has the explicit forms
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Zo

~

@2

Yo

Lo

Figure 2. The framexoyozo With mean spin directiofy as the bisector of two spinorial quantization
axesQ1 and Q».

iv2 011 o] 1 1
=————|cof-|Z2) —siP-|-Z-2 25
i V1+co26 |: 2’22>2o 2‘ 2 2>2J #)
in terms of the constituent spinor states and
iv2 G 50
) = T [cos2 E|11)20 — sir? §|1—1)20} (26)

in terms of the angular momentum states);, of the spin-1 system. A little insight into the

form (25) shows that fof # 0, 7, [/) cannot be written as a simple product of the séin-
states implying that it is indeed entangled. The form (26) suggests, on the other hand, that the
state is non-oriented for alexcept for¥ = 0, 5, =. Keeping these observations in mind, we
now discuss the squeezing criterion by determining the relevant quantities which turn out to
be

2 l+cos?

A% = 21+ co20) @0
1

2 _

A8y, = (1+cog6) (28)
and
2 cosd

(Sz) = 1+co28)" (29)

The squeezing condition fdt,, now takes the form
cog 6 < | cosd| (30)
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Figure 3. Variations of co36 (solid curve) and cosf| (dotted curve) with respect tbare shown.
The squeezing condition (30) is satisfied foreaéxcept ford = 0, 5, 7.

which is satisfied for alb except wher® = 0, 7, = as is seen from the graph in figure 3.

The absence of squeezing for= 0, 7, 7 is obvious as the two axes then merge together
giving an oriented state. Thus in all other cases the $fatés non-oriented by construction
and equation (30) implies that every spin-1 non-oriented pure state is squeezed in the spin
components,, and this squeezing is a function of the anglevhich is half the separation
angle between the orientation directios and 0, of the two spin% states.

We now establish explicitly far = 1, the connection between squeezing and the spin—spin
correlations that exist between the constituent spinors. Any spin-1 state constructed using the
two spinors is said to possess spin correlations if the correlation n@tfidefined through

its elements

Ci2 = (S1.S20) — (S1,)(S2) (31)
is non-zero. Here;, andS,, are the spin components associated with the two spinors and
the angular brackets denote the expectation values with respect to the coupled state. For the

state|yr) in (25), the correlation matrix is diagonal in the framgozo with the ‘diagonal’ or
the ‘eigen’ elements given by

sir? 0 st |°
c2 ——__— —_  —_c® c2 = ——|. 32
oo = T 41+ cog 6) Joyo w0 | 2(1+cog6) 52

A glance at these expressions shows that when0, 7, i, the values of the diagonal entries

are either 0 oﬂ:%. On the other hand, for all other valuestgfthe eigen correlations satisfy

0<IC <3  i=x0)0 70 (33)
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In other words, all non-oriented (squeezed) spin-1 states have the eigen correlations restricted
to the above range. One can also see that the trace of the correlation matrix is

Sinf o :|2

2(1 +co26) (34)

Tr(c*? = [

This being invariant under rotations of the co-ordinate frames, satisfies the condition
0<Tr(c*? <1 (35)

whenever the state is non-oriented (squeezed). Conversely, if a given coupled state has a
correlation matrix that satisfies this condition, the state is necessarily non-oriented (squeezed).
Given such a correlation matrix, the valuesotan be found out through
1

192
1-—2Tr(C*?)?
—()1 (36)
1+ 2Tr(C12)2

which identifies the structure of the state in terms of the two spinors. The four valaekaif
satisfy the above equation correspond to two directian®; and+0,. Thus we conclude

that the trace condition (35) on the correlation matrix is the necessary and sufficient condition
for a spin-1 state to be squeezed.

C059::|:|:

4. Summary

In this paper we have classified spin states into oriented and non-oriented states and studied
their squeezing properties. Our analysis shows that orienteds giates are not squeezed.
Considering, in particular, the non-oriented states of a spin-1 system, we have shown that
they exhibit squeezing. This has been illustrated in two different ways: first by looking at
the non-oriented nature of the spin-1 state itself and secondly, by introducing a new form of
coupling in which two spin% states add up to give the required spin-1 non-oriented state. Our
construction gives a quantitative description of the existence of quantum correlations as well
as an indication as to how they lead to non-oriented nature and hence to squeezing behaviour.

As is clear from our analysis, squeezing is exhibited only by non-oriented states. While in
the particular case of spin-1 pure states, the word non-oriented is synonymous with the word
‘squeezing’, a similar detailed study may be necessary to know whether non-oriented states
which are not squeezed exist whers- 1. This intimate relationship between squeezing and
‘non-oriented’ nature indeed suggests that the non-oriented states are experimentally potential
candidates for observing squeezing. A recent study by Ramachandran and Deepak [10] reveals
that the collision of a spir%— beam with a spir% target, both oriented in different directions,
leads to a combined spin state which is non-oriented. Another equally interesting aspect is
to know how squeezing is exhibited by mixed spin states. A detailed study of this aspect
employing the density matrix techniques, is underway.
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Appendix A

Statement. A state|y) of spins constructed out of 2spinors each with projection%+w.r.t
Qi, i=1,...,2sinthe form

1 N
W) =N S CELL mymops) ... C(s — Lhs; oy omam)D? 100D} (Qa) Ism):

all m;

(A.1)

where) . m; = m, N being the normalization constant is oriented if and only if@llare
collinear.

Proof. If 0; = +0 for all i, the D's together with the Clebsch—Gordan coefficients can be
added to get

ZD (Q)lsm'); (A-2)

which is by definition oriented. This proves the sufficiency part. To prove the necessity, we
note that if the statg) ) is oriented as in (A.2), we can choose fhaxis of the frame along
itself so thatD® ,(Q) reduces td,,, indicating thaty) = |sm/)Q for some fixedn’. Setting

2 = Qin (A.1), we see that the above reduction implies that all coefficients:of, except
that of |sm’) will be zero. O

The coefficients of eachm) in (A.1) can be expressed as

N n
=> o[ ]uG.n ¢j#0 forall r,j
=t =1 (En.r)

r=0,...,n N=<n>
r

wheret; = p; = |cosg—2’| for some set of- number ofi’'s ands; = g; |sm | for the
remaining(n — r) i's. In this form the above analysis implies that i) is orlented only
one of theo,’s is non-zero. Note that equatiofi,(,) simplifies to[ [, #; (1, r) = f’l = 0 for
r = 0 orn (or both). Hence at least one of thél, 0 or n) must be zero; call it;. That is,

eitherp; = 0,q; = ,/1— p?=1orq; =0, p; = ,/1— g? = 1. Discarding thig and then
renumbering the rest of thés from 1 ton — 1, we see that in equatiorEf , ), the quantity

t; makes its appearance either (i)ras= 0 in ( ) products[[# = 0 and as/1—17 = 1

in the remaining(”) — (“~1) = (";") products[]; or (ii) vice versa. Incorporating these
values we see that equatioB,(,), for the survivingi = 1,2, ..., n — 1, reappears precisely

as equationk,_1,) or as E,-1,-1). Repeating the foregoing reasoning we see that at least
one other; vanishes, and so on. It follows eventually that for every one of thel, . .., 2s,
eitherp;, = 0,¢q; = 1 orq; = 0, p; = 1. This means that all; are either O otr. In other

words, all theQ; have to be collinear.
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