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Abstract. We classify the pure states of a spin-s system into oriented and non-oriented states.
A pure state is said to be non-oriented if it is not an eigenstate ofS2 andSz with respect to any
axis of quantization. If it is an eigenstate it is oriented. In this paper, we discuss the notion of
spin squeezing in these states. Our analysis shows that the oriented states are not squeezed while
non-oriented states exhibit squeezing. We also present a new scheme for the construction of spin-s

states using 2s spinors oriented along different axes. Taking the case ofs = 1, we show that
‘non-oriented’ nature and hence squeezing arise from the intrinsic quantum correlations that exist
among the spinors in the coupled state.

1. Introduction

The notion of squeezing was initially introduced in the case of a harmonic oscillator [1] and
subsequently for the radiation field [2]. Since then it has also been extended to non-canonical
systems such as spin. The state of a harmonic oscillator is said to be squeezed if the variance
1x2 or1p2 is less than1

2 which is the minimum uncertainty limit. Although squeezing is thus
unambiguously defined in the case of bosonic systems [1], its definition in the context of spin
needs careful consideration. The components of the spin operatorES satisfy the commutation
relations

[Sx, Sy ] = iSz x, y, z cyclic (1)

and hence obey the uncertainty relationships

1S2
x1S

2
y >
〈Sz〉2

4
x, y, z cyclic. (2)

A comparison of these uncertainty relations with1x21p2 > 1
4 for a harmonic oscillator would

naturally suggest that a spin state could be regarded as squeezed if1S2
x or 1S2

y is smaller

than |〈Sz〉|2 , where the expectation value and the variances are calculated in some arbitrary
coordinate system. Indeed, this has been used as the squeezing criterion in the literature [2].
This criterion has been critically examined by Kitagawa and Ueda [2] who have remarked
that such a definition is coordinate dependent in the sense that a state which is squeezed in
a given coordinate frame will not be squeezed in some other coordinate frame. For more
details and remarks we refer the reader to [2]. In an attempt to arrive at a proper criterion for
squeezing, Kitagawa and Ueda [2] consider the model in which a spin-s state is visualized
as being built out of 2s elementary spin-12 states. A coherent spin state (CSS)|θ, φ〉 is then
defined as a state in which all the 2s elementary spins point in the same directionn̂(θ, φ)
in real three-dimensional space. Apart from being an eigenstate ofES · n̂ with eigenvalues,

0305-4470/00/040779+11$30.00 © 2000 IOP Publishing Ltd 779



780 K S Mallesh et al

this state satisfies the minimum uncertainty relationship: namely (2), with equality sign with
uncertaintiess2 equally distributed over any two orthogonal spin components normal to the
directionn̂. As this state is a combination of 2s spin-12 states all pointing in the same direction
n̂, they conclude that there are no quantum correlations. They then go on to suggest that
if quantum correlations are established among the elementary spins, it would be possible to
cancel out fluctuations in one direction at the expense of those enhanced in the other direction.
Taking this as the physical basis for squeezing, they define that a spin-s state is squeezed if the
variance in one spin component orthogonal to the mean spin vector is smaller than the standard
quantum limit s2. An alternative criterion [3] for squeezing has also been given by Wineland
et al . This is based on the requirement of an improvement in sensitivity over what is obtained
by using the coherent state in the measurements with spins. Accordingly, a spin-s state is said
to be squeezed if the real parameter

ξ =
[

2s(1S⊥µ )
2

〈Sµ〉2
] 1

2

< 1 (3)

whereS⊥µ is the spin component orthogonal toµ̂. A physical basis for the origin of essentially
the above criterion has been obtained by Puri [4] who refers to it as SQII. This criterion, SQII,
is claimed to be equivalent to the Kitagawa and Ueda condition referred to as SQI, in the sense
that SQII holds only if SQI is satisfied by a state.

In this paper, we study in some detail the structure of spin-s states which are obtained in a
novel way from 2s elementary spin-12 states each of which point independently in 2s arbitrary
directionsn̂1(θ1, φ1), . . . , n̂2s(θ2s , φ2s) and identify those states which exhibit squeezing. We
also show that the states so constructed are indeed non-oriented and fors = 1, these states
possess not only quantum correlations as indicated by Kitagawa and Ueda [2] but also the
entangled structure when expressed in terms of the states of the two constituent spinors.

The paper is organized as follows: section 2 deals with the definition of oriented and non-
oriented states and their multi-axial nature. The squeezing behaviour of these states is also
presented here. In section 3 we present a new scheme of construction of arbitrary spin-s states
and use this scheme to construct a non-oriented spin-1 state. We discuss here the correlation
aspects associated with the basic spinorial configuration in these states which are shown to be
responsible for the manifestation of squeezing.

2. State classification and squeezing

The uncertainty relationship for the components of spin referred to a Cartesian framexyzwith
mutually orthogonal directionŝi, ĵ andk̂ is given by

1(ES · î)21(ES · ĵ )2 > 1
4〈 ES · k̂〉2. (4)

In order to discuss spin squeezing, we first begin with the squeezing condition itself. Referring
to [2–4], we adopt the following definition:A spin state is squeezed if one of the variances
in the spin components normal to the mean spin direction is less than half the modulus of the
expectation value of the spin component along the mean spin direction: i.e., a spin state with
µ̂ as the spin direction is said to be squeezed inS⊥µ if

1(S⊥µ )
2 <
|〈Sµ〉|

2
(5)

whereS⊥µ is the spin component orthogonal toµ̂.
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We first of all start with the familiar angular momentum states|sm〉k̂: i.e., the eigenstates
of S2 andSz with respect to the axis of quantizationk̂. For such states,̂k itself is the mean spin
direction and〈Sz〉 = m. We also have

1(ES · î)2 = 1
2(s(s + 1)−m2) = 1(ES · ĵ )2. (6)

It is clear that either of the squeezing conditions

1(ES · î)2 < 1
2|〈 ES · k̂〉| or 1(ES · ĵ )2 < 1

2|〈 ES · k̂〉| (7)

is not satisfied here for anym. Thus states such as|sm〉k̂ are not squeezed at all. One can
however consider superpositions of the states|sm〉k̂ of the form

|ψ〉 =
∑
m

Cm|sm〉k̂ (8)

and investigate if these exhibit squeezing or not. We consider two mutually exclusive classes
of such states which together exhaust all pure states in the(2s + 1)-dimensional spin space of
the system.

2.1. Oriented spin states

An oriented spin state by definition is a state|ψ〉 of the form (8) wherein the coefficientsCm
are given by

Cm = Ds
mm′(αβγ ). (9)

HereDs denote the standard rotation matrices with a fixed indexm′ and a given set of Euler
angles (α, β, γ ). In effect, this means that an oriented state|ψ〉 is an angular momentum state
|sm′〉k̂′ with respect to the quantization axisk̂′ in a frame of reference characterized byî ′ĵ ′k̂′

which is related to thêiĵ k̂ frame via the Euler rotation throughα, β, γ . Equation (8) thus
takes the form

|ψ〉 = |sm′〉k̂′ =
∑
m

Ds
mm′(αβγ )|sm〉k̂ (10)

for the above class of spin states. To illustrate the significance of the Kitagawa and Ueda
condition, we now calculate the relevant variances and the expectation values in theî ĵ k̂ frame
which turn out to be

1(ES · î)2 = 1
2(1− sin2 θ cos2 φ)[s(s + 1)−m′2] (11)

and

〈Sz〉 = m′ cosθ (12)

whereα = φ, β = θ, γ = 0 are the Euler angles withθ, φ being the polar angles of̂k′ with
respect to the framêiĵ k̂.

Having obtained these quantities in an arbitrary frame, we now see that there exists a wide
range of values ofθ andφ for which

1(ES · î)2 < |〈Sz〉|
2

. (13)

However, we cannot call such states squeezed, at this stage, as the mean spin direction isk̂′
and notk̂. If we now calculate the variances perpendicular to the mean spin direction, they
indeed turn out to be exactly equal to those in (6) and thus fail to be squeezed. To appreciate a
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significant feature of the alternative criterion, that it can be applied in any frame, we find that
ξ in the framêiĵ k̂ itself is given along thex-axis by

ξ =
[

2s(1− sin2 θ cos2 φ)(s(s + 1)−m′2)
m′2 cos2 θ

] 1
2

. (14)

Note thatξ exceeds unity for allm
′
, θ andφ except whenθ = π

2 , φ = 0, π in which case it
becomes indeterminate. Thus both criteria lead to the same conclusion that no oriented pure
state is a squeezed state. In particular, for spins = 1

2, it is well known that any arbitrary set
of expansion coefficientsCm in (8) may always be identified as (9) with an appropriate choice
of α, β, γ , as a consequence of the homomorphism betweenSU(2) andO(3). Consequently,
all pure spin-12 states are oriented and thus do not exhibit squeezing. This naturally leads us
to consider states withs > 1 where there exist states that are intrinsically different from the
oriented states. We now turn our attention to such states.

2.2. Non-oriented states

Any normalized spin-s state|ψ〉 of the form (8) is, in general, specified by 4s real independent
parameters. The oriented states described above are specified at the most by three parameters
which are the three independent Euler anglesα, β andγ . Since 4s > 3, for s > 1, there exist
states which are not oriented. In other words, there exist states which cannot be identified as
eigenstates ofS2 andSz with respect to any choice of axis of quantization. We refer to such
states as non-oriented. While an oriented state is characterized by a single direction, i.e. the
axis of quantization (specified by two real variablesθ, φ) in the physical space, a non-oriented
state could be characterized by more than one direction. In fact, it is interesting to know
whether any arbitrary spin state|ψ〉 specified with respect to some frame in the form (8) is
oriented or not. This problem has been studied in quite some detail [5] using the density matrix
techniques and the notion of the spherical tensor parameters.

In order to see whether squeezing exists for a non-oriented state we now start with an
arbitrary state|ψ〉 and first determine its mean spin directionẑ0. This can be done, for example,
by determining the direction cosines ofẑ0 using the expectation values of〈 ES · î〉, 〈 ES · ĵ〉 and
〈 ES · k̂〉 in the framexyz in which |ψ〉 is initially specified. Once these are obtained, the polar
angles of the mean spin direction̂z0 with respect toxyz can be found out. A subsequent
rotation is then effected which takesk̂ to ẑ0. Furthermore, one can also now choose thex̂0

andŷ0 axes conveniently by rotating the resulting frame aboutẑ0. For the most general spin-1
state that possesses a non-zero mean spin value〈 ES〉, such a procedure leads to the form

|ψ〉 = cosδ|1, 1〉ẑ0 + sinδ|1,−1〉ẑ0 0< δ < π (15)

where|1, m0〉ẑ0 are the angular momentum states specified with respect to theẑ0 axis in the
x0y0z0 frame. This state is obviously non-oriented for all values ofδ other than 0,π4 , π2 , 3π

4 ,
π as the coefficients in (15) do not satisfy (9) for any choice ofα, β andγ . For such a state
referred to the framex0y0z0, the relevant quantities needed for studying squeezing turn out to
be

1S2
x0
= 1

2(1 + sin 2δ)
1S2

y0
= 1

2(1− sin 2δ)
〈Sz0〉 = cos 2δ

(16)

so that the squeezing conditions forSx0 andSy0 are, respectively, given by

1 + sin 2δ < | cos 2δ| (17)
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Figure 1. Variations of1S2
x0

(solid curve),1S2
y0

(dashed curve) and|〈 Sz02 〉| (dotted curve) with

respect toδ are shown. It is clear that except forδ = 0, π4 ,
π
2 ,

3π
4 , π (when the state is oriented),

the state|ψ〉 as given by (15) is squeezed either inSx0 or in Sy0.

and

1− sin 2δ < | cos 2δ|. (18)

These conditions are indeed separately valid for the entire range ofδ except forδ = 0, π4 , π2 ,
3π
4 , π which implies that a non-oriented state|ψ〉 is indeed a squeezed state. The graph drawn

in figure 1, which contains the plots of1S2
x0

, 1S2
y0

and
|〈Sz0〉|

2 with respect toδ, indeed show
that|ψ〉 is squeezed inSy0 in the open intervals 0< δ < π

4 , π4 < δ < π
2 and inSx0 in the other

intervals: π2 < δ < 3π
4 , 3π

4 < δ < π .
Needless to say, the non-oriented state is also squeezed according to the alternative

condition, asξ for thex(y) component given by

ξ =
[

1± sin 2δ

cos2 2δ

] 1
2

(19)

is indeed less than unity for the range of values ofδ for which squeezing is exhibited according
to the former criterion.

3. Quantum correlations

Having thus identified the squeezed states in the spin-1 case, it is of interest to analyse in
quantitative terms the suggestion made by Kitagawa and Ueda that squeezing in spin systems
arises from the existence of quantum correlations. This can be done by employing the model
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in which a spin-s state is constructed using 2s spin-12 states as has been suggested by them.
Indeed such constructions using spinors were known in mathematics and were defined in their
most general form by Cartan [6] much before the spinors were used to describe particles with
spin-12 in physics. Majorana’s geometric realization [7] of a spin-s state as a constellation of
2s points on a sphere [8] lead to Schwinger’s idea [9] of realizing|sm〉 states in the form,

|sm〉 = (a
†
+)
s+m(a

†
−)s−m

[(s +m)!(s −m)!] 1
2

|00〉 (20)

wherea†
+, a†
− are the creation operators for the spin ‘up’ and spin ‘down’ states, respectively.

It must be noted here that spin ‘up’ and spin ‘down’ states as well as|sm〉 are all referred to
the same axis of quantization.

At this point, we would like to generalize this realization by taking 2s ‘up’ spinorsu(θl, φl);
l = 1, . . . ,2s where thekth spinor is specified with respect to an axis of quantizationQ̂k(θkφk)

in the physical space. Coupling two such spinors leads to

|u(θ1, φ1)u(θ2, φ2)〉 =
∑

m1,m2,j

D

1
2

m1
1
2

(φ1θ10)D
1
2

m2
1
2

(φ2θ20) C( 1
2

1
2j ;m1m2m)|( 1

2
1
2)jm〉 (21)

wherej = 0, 1. Coupling 2s spinors this way leads to a spin-s state in the form (8), which
implies that the coefficientsCm are given by

Cm = Nsdm N−1
s =

{ s∑
m=−s
|dm|2

} 1
2

(22)

where

dm =
∑

m1,...,m2s−1

C( 1
2

1
21;m1m2µ1)C(11

2
3
2;µ1m3µ2) . . . C(s − 1

2
1
2s;µ2s−2m2sm)

D
1
2

m1
1
2
(φ1θ10) . . . D

1
2

m2s
1
2
(φ2sθ2s0).

(23)

Thus our construction of a spin-s state |ψ〉 is done using 2s spin-12 states which are

specified with respect to 2s different directions:Q̂1, Q̂2, . . . , Q̂2s in general. In particular,
if Q̂1 = ±Q̂2 · · · = ±Q̂2s , then our construction specializes to the realization suggested
by Schwinger and employed by Kitagawa and Ueda and Puri and Agarwal. Indeed, in this
particular case, the spin state realized is nothing but an oriented state|sm〉 since the coefficients
Cm in equation (22) are identical with (9). The significance of our construction lies in the fact
that if Q̂l 6= ±Q̂m for at least two quantization directions, the state realized is a non-oriented
state of spins (a formal proof is given in the appendix). As can be seen from the structure of
Cm, the non-oriented states so constructed indeed form a non-denumerable dense subset in the
Hilbert space of the spin system.

Considering in particular the simplest case ofs = 1, we note that such a construction can
be carried out using two spinors specified with respect toQ̂1(θ1φ1) andQ̂2(θ2φ2) so that the
spin-1 state

|ψ〉 = N1

∑
m1,m

D
1
2

m1
1
2
(φ1θ10)D

1
2

m2
1
2
(φ2θ20)C( 1

2
1
21;m1m2m)|( 1

2
1
2)1m〉 (24)

in the lab framêiĵ k̂ is non-oriented ifQ̂1 6= ±Q̂2. The mean spin direction̂z0 for such a state
happens to be along the bisector of the two directionsQ̂1 andQ̂2. Employing the framex0y0z0

with x0 lying in the plane ofQ̂1 andQ̂2 as shown in figure 2, we see that the polar angles of
Q̂1 andQ̂2 with respect tox0y0z0 are respectively(θ, 0) and(θ, π), where 2θ is the angular
separation between̂Q1 andQ̂2. The state|ψ〉 then has the explicit forms
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Figure 2. The framex0y0z0 with mean spin direction̂z0 as the bisector of two spinorial quantization
axesQ̂1 andQ̂2.

|ψ〉 = − i
√

2√
1 + cos2 θ

[
cos2

θ

2

∣∣∣∣12 1

2

〉
ẑ0

− sin2 θ

2

∣∣∣∣−1

2
−1

2

〉
ẑ0

]
(25)

in terms of the constituent spinor states and

|ψ〉 = − i
√

2√
1 + cos2 θ

[
cos2

θ

2
|11〉ẑ0 − sin2 θ

2
|1− 1〉ẑ0

]
(26)

in terms of the angular momentum states|1m〉ẑ0 of the spin-1 system. A little insight into the
form (25) shows that forθ 6= 0, π , |ψ〉 cannot be written as a simple product of the spin-1

2
states implying that it is indeed entangled. The form (26) suggests, on the other hand, that the
state is non-oriented for allθ except forθ = 0, π2 , π . Keeping these observations in mind, we
now discuss the squeezing criterion by determining the relevant quantities which turn out to
be

1S2
x0
= 1 + cos 2θ

2(1 + cos2 θ)
(27)

1S2
y0
= 1

(1 + cos2 θ)
(28)

and

〈Sz0〉 =
2 cosθ

(1 + cos2 θ)
. (29)

The squeezing condition forSx0 now takes the form

cos2 θ < | cosθ | (30)
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Figure 3. Variations of cos2 θ (solid curve) and| cosθ | (dotted curve) with respect toθ are shown.
The squeezing condition (30) is satisfied for allθ except forθ = 0, π2 , π .

which is satisfied for allθ except whenθ = 0, π2 , π as is seen from the graph in figure 3.
The absence of squeezing forθ = 0, π2 , π is obvious as the two axes then merge together
giving an oriented state. Thus in all other cases the state|ψ〉 is non-oriented by construction
and equation (30) implies that every spin-1 non-oriented pure state is squeezed in the spin
componentSx0 and this squeezing is a function of the angleθ which is half the separation
angle between the orientation directionsQ̂1 andQ̂2 of the two spin-12 states.

We now establish explicitly fors = 1, the connection between squeezing and the spin–spin
correlations that exist between the constituent spinors. Any spin-1 state constructed using the
two spinors is said to possess spin correlations if the correlation matrixC12 defined through
its elements

C12
µν = 〈S1µS2ν〉 − 〈S1µ〉〈S2ν〉 (31)

is non-zero. HereS1µ andS2ν are the spin components associated with the two spinors and
the angular brackets denote the expectation values with respect to the coupled state. For the
state|ψ〉 in (25), the correlation matrix is diagonal in the framex0y0z0 with the ‘diagonal’ or
the ‘eigen’ elements given by

C12
x0x0
= − sin2 θ

4(1 + cos2 θ)
= −C12

y0y0
C12
z0z0
=
[

sin2 θ

2(1 + cos2 θ)

]2

. (32)

A glance at these expressions shows that whenθ = 0, π2 , π , the values of the diagonal entries
are either 0 or± 1

4. On the other hand, for all other values ofθ , the eigen correlations satisfy

0< |C12
ii | < 1

4 i = x0, y0, z0. (33)
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In other words, all non-oriented (squeezed) spin-1 states have the eigen correlations restricted
to the above range. One can also see that the trace of the correlation matrix is

Tr(C12) =
[

sin2 θ

2(1 + cos2 θ)

]2

. (34)

This being invariant under rotations of the co-ordinate frames, satisfies the condition

0< Tr(C12) < 1
4 (35)

whenever the state is non-oriented (squeezed). Conversely, if a given coupled state has a
correlation matrix that satisfies this condition, the state is necessarily non-oriented (squeezed).
Given such a correlation matrix, the value ofθ can be found out through

cosθ = ±
[

1− 2Tr(C12)
1
2

1 + 2Tr(C12)
1
2

] 1
2

(36)

which identifies the structure of the state in terms of the two spinors. The four values ofθ that
satisfy the above equation correspond to two directions:±Q̂1 and±Q̂2. Thus we conclude
that the trace condition (35) on the correlation matrix is the necessary and sufficient condition
for a spin-1 state to be squeezed.

4. Summary

In this paper we have classified spin states into oriented and non-oriented states and studied
their squeezing properties. Our analysis shows that oriented spin-s states are not squeezed.
Considering, in particular, the non-oriented states of a spin-1 system, we have shown that
they exhibit squeezing. This has been illustrated in two different ways: first by looking at
the non-oriented nature of the spin-1 state itself and secondly, by introducing a new form of
coupling in which two spin-12 states add up to give the required spin-1 non-oriented state. Our
construction gives a quantitative description of the existence of quantum correlations as well
as an indication as to how they lead to non-oriented nature and hence to squeezing behaviour.

As is clear from our analysis, squeezing is exhibited only by non-oriented states. While in
the particular case of spin-1 pure states, the word non-oriented is synonymous with the word
‘squeezing’, a similar detailed study may be necessary to know whether non-oriented states
which are not squeezed exist whens > 1. This intimate relationship between squeezing and
‘non-oriented’ nature indeed suggests that the non-oriented states are experimentally potential
candidates for observing squeezing. A recent study by Ramachandran and Deepak [10] reveals
that the collision of a spin-12 beam with a spin-12 target, both oriented in different directions,
leads to a combined spin state which is non-oriented. Another equally interesting aspect is
to know how squeezing is exhibited by mixed spin states. A detailed study of this aspect
employing the density matrix techniques, is underway.
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Appendix A

Statement. A state|ψ〉 of spin-s constructed out of 2s spinors each with projection +12 w.r.t

Q̂i, i = 1, . . . ,2s in the form

|ψ〉 = N
∑
all mi

C( 1
2

1
21;m1m2µ1) . . . C(s − 1

2
1
2s;µ2s−2m2sm)D

1
2

m1
1
2
(Q̂1) . . . D

1
2

m2s
1
2
(Q̂2s) |sm〉ẑ

(A.1)

where
∑

i mi = m, N being the normalization constant is oriented if and only if allQ̂i are
collinear.

Proof. If Q̂i = ±Q̂ for all i, theD’s together with the Clebsch–Gordan coefficients can be
added to get

|ψ〉 =
∑
m

Ds
mm′(Q̂)|sm′〉ẑ (A.2)

which is by definition oriented. This proves the sufficiency part. To prove the necessity, we
note that if the state|ψ〉 is oriented as in (A.2), we can choose theẑ-axis of the frame alonĝQ
itself so thatDs

mm′(Q̂) reduces toδmm′ indicating that|ψ〉 ≡ |sm′〉Q̂ for some fixedm′. Setting

ẑ = Q̂ in (A.1), we see that the above reduction implies that all coefficients of|sm〉Q̂ except
that of|sm′〉 will be zero. �

The coefficients of each|sm〉 in (A.1) can be expressed as

σr =
N∑
j=1

crj

n∏
i=1

ti(j, r) crj 6= 0 for all r, j

r = 0, . . . , n N =
(
n

r

) (En,r )

whereti = pi = | cosθi2 | for some set ofr number ofi’s and ti = qi = | sin θi
2 | for the

remaining(n − r) i’s. In this form the above analysis implies that if|ψ〉 is oriented, only
one of theσr ’s is non-zero. Note that equation (En,r ) simplifies to

∏
i ti (1, r) = σr

cr1
= 0 for

r = 0 or n (or both). Hence at least one of theti(1, 0 or n) must be zero; call ittI . That is,

eitherpI = 0, qI =
√

1− p2
I = 1 orqI = 0,pI =

√
1− q2

I = 1. Discarding thisI and then
renumbering the rest of thei’s from 1 ton − 1, we see that in equation (En,r ), the quantity

tI makes its appearance either (i) astI = 0 in
(
n−1
r−1

)
products

∏
ti = 0 and as

√
1− t2I = 1

in the remaining
(
n

r

) − (n−1
r−1

) = (
n−1
r

)
products

∏
ti ; or (ii) vice versa. Incorporating these

values we see that equation (En,r ), for the survivingi = 1, 2, . . . , n− 1, reappears precisely
as equation (En−1,r ) or as (En−1,r−1). Repeating the foregoing reasoning we see that at least
one otherti vanishes, and so on. It follows eventually that for every one of thei = 1, . . . ,2s,
eitherpi = 0, qi = 1 or qi = 0, pi = 1. This means that allθi are either 0 orπ . In other
words, all theQ̂i have to be collinear.
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